1/5/2024 8:55:00 AM   By  Admin  in

A Temperature Compensator Crystal Oscillator or a TCXO is a crystal oscillator that is designed to withstand high-temperature conditions. In a regular crystal oscillator the oscillation frequency fluctuates with the rise in temperature. The consequence of this is an unstable oscillation frequency. TCXO supports a stable oscillation frequency at high temperatures. For this, they take the help of a temperature compensation network which balances out the oscillation frequency at higher temperatures.

 

Performance figure of TCXO

Some of the most important performance figures of TCXO are as follows:

  • Power Dissipation – The dissipation of power in a TCXO will be much greater as compared to an ordinary oscillator keeping in view of the additional circuitry needed. In addition to that the cost becomes greater. It should also be kept in mind that the cost is greater. It is also worth remembering that it will take a short period after start-up for the oscillator to stabilize. This might be of the order 100 ms, or conceivably more, subordinate upon the plan.

 

  • TCXO PPM performance – As said earlier, the performance of TCXO temperature is much better as compared to a normal crystal oscillator. Ordinarily, figures of somewhere in the range of 10 and 40 times improvement can regularly be seen. Figures that are better than +1.5 (or -1.5) ppm over a temperature range of 0 to 70 degrees Celsius are much harder to achieve as they at that point fall into a high exactness classification where costs increment essentially.

1/5/2024 8:27:00 AM   By  Admin  in

TESTING 1234 XON INDIA PRIVATE LTD


Tags :
11/29/2021 1:53:00 AM   By  Admin  in

In electrical engineering, a linear voltage regulator is a system that is utilized in maintaining a steady voltage. The regulator's resistance varies according to the load as well as the input voltage, leading output of unchanged voltage. This regulating device is constructed in such a manner that it behaves like a variable resistor which adjusts a voltage divider network continuously to keep up a steady yield voltage. In contrast to this, a switching regulator takes the help of active equipment that turns ON/OFF to keep an average output value. Since the regulated voltage should always be lower than the output voltage, the value of efficiency is limited. To enable the active device to drop some voltage, the input voltage needs to be high.

Linear regulators may keep the regulating device in between the regulated load and the source (series) or in parallel with the load. Simple linear regulators may include a series of resistors and a Zener diode while the complex ones come with power pass element, voltage reference, and error amplifiers. Since a linear regulator is one of the most common elements in several devices, ICs are very common. Linear voltage regulators may also be constructed by several vacuum tubes or solid-state components.

There are 2 basic forms of Linear Voltage Regulators. One is the series regulators and the other one is the shunt regulators. Most of the linear regulators in use are marked with maximum rated output current. This is commonly limited by the current conveying ability, or by the power dissipation ability of the output transistor.

 

  1. Series Regulators – Series regulators are the most commonly used regulators; they are much more efficient than the shunt regulators. This regulator works by setting up a path from the load to the supply voltage through a variable resistance (transistor). For this reason, it is commonly known as pass transistor. The amount of power dissipated by the regulator is equal to the product of the voltage drop with the power supply output current in the device. For the reduced stress and efficiency on the pass transistor, manufacturers generally try to decrease the amount of voltage drop. It is found that not all the circuits are regulated efficiently as soon as their input voltage comes near the required output voltage. Those that are regulated efficiently is known as Low Dropout regulators.

 

  1. Shunt Regulators – This regulator works by giving a way from the ground to the supply voltage through a variable resistance. The current coming from the regulator is made to flow to the ground by diverting away from the load. Because of this reason, the shunt regulators are less efficient than the series regulator. These kinds of regulators are used in very low-powered circuits where the squandered current is too little to even think about being of concern.

 

This was all we have regarding linear voltage regulators. Hope you liked going through it. Brands that manufacture these regulators are ON SemiconductorTexas Instruments, and STMicroelectronics. Make sure to check them out using the links as provided.

 


Tags :
9/2/2020 1:11:00 AM   By  Admin  in

A power amplifier that takes in the low power input with the help of a controller IC and generates a high current gate drive for a power device is known as a gate driver. It is utilized whenever a PWM controller is not able to provide the output current needed to drive the gate capacitance of the power device linked to it.

In the power electronic systems, the gate driver circuit is the most important part. It forms an interface between the control circuits and the high-power electronics and is utilized to drive powerful semiconductor devices. The output from the SMPS and DC-DC converters depends mainly on the gate driver's circuits. This leads to the conclusion that if the gate driver circuit is not able to drive the gate of a power device in the right manner, the output of the DC-DC converter will not be as per the design requirement. Thus, the gate driver circuit’s design is significant in the structuring of power electronic converters.

 

Gate Drivers Types

  1. High Side Low Side Drivers – This kind of gate drivers is utilized in driving 2 switches that are connected in the bridge arrangements (both ground referenced and floating switches).
  2. Low Side Drivers - This kind of gate drivers is utilized in driving ground-referenced switches.

 

Gate Driver Isolation

Gate drive circuits for power converters and inverters commonly require electrical isolation for both safety and functional purposes. Isolation is ordered by administrative and security accreditation organizations to forestall stun dangers. The gate drivers also help in protecting low voltage electronics from any kind of damage caused by faults on the high power side circuit. On the control side, these drivers also provide protection from error due to humans. In the system, due to the electrical separation between several functional circuits, a direct conductional path between them is prevented. Not only this, but it also enables individual circuits to have different ground voltage. Power and signals can still pass between isolated circuits with the help of capacitive, optical, or inductive methods.

Several applications of power devices need an isolated gate drive circuit. For instance, in power converter topologies like the two-switch forward, buck, active-clamp forward, full-bridge and, half-bridge, both the high as well as low switches are present because low side drivers cannot be utilized directly for driving the higher power equipment. This equipment needs an isolated gate driver because the emitter and source of the upper devices are not sitting at the ground potential.

 

Two things are required for driving high side switches:

  • Level shifter - to pass on the PWM control signal to the floating driver circuitry.
  • Floating Supply – to support any circuitry by providing power with this floating midpoint potential.

 

Techniques of Isolation

Generally, there are two most common methods to actualize isolated gate drivers:

  • Optical – Takes place with the help of Opt coupler.
  • Magnetic – Takes place with the help of Gate drive transformers.

 

This was all we have regarding Gate drivers. Hope you liked going through it. Brands that manufacture them are TE Connectivity, ITT, and Molex. Make sure to visit them using the links as provided.

View all the Gate Driver


8/1/2020 3:53:00 PM   By  Admin  in

A variable resistor that is utilized in controlling current is known as a rheostat. This device helps in varying the resistance in an electrical circuit without any interruption. The construction of a rheostat is much like that of the potentiometers. Even when three terminals are present, it utilizes only 2 connections, like a potentiometer. One of the connection is made with the wiper and the other one is made to the resistive element. Unlike the potentiometers, rheostats can convey a noteworthy current. Thus they are generally manufactured as wire wound resistors. The resistive wire is twisted around a protecting ceramic core and the wiper slides over the windings.

Rheostats were most commonly utilized in power controlling devices, for example, to operate the speed of motors, to control the intensity of light (dimmer), in ovens and heaters. These days they are not utilized for this capacity any longer. The reason behind this is because of its low efficiency. Because of its characteristic of variable resistance they are generally used for calibration in a given electrical circuit. In these cases, they are balanced distinctly during creation or circuit tuning. In these cases generally, trimpots are utilized, wired as a rheostat.

 

Types of Rheostat

There are many types of Rheostat. Let’s look at them below:

  • Rotary Rheostat – As the name suggests, the rotary rheostat comes with a rotary resistive path. These have found its utilization in power applications. This kind of rheostat has a shaft which is mounted by a wiper. The wiper is just a sliding contact for a rotary rheostat that can pivot over three-fourth of a circle.

 

  • Linear Rheostat – This kind of rheostat comes with a linear resistive path. The path is glided by the sliding terminal. Here we have got 2 fixed terminal but only one of them is used. The other one is attached to the slider. These are generally utilized in laboratory applications. For the most part, a wire-wound resistive way along with a linear cylinder-shaped material is utilized.

 

  • Preset Rheostat – Whenever rheostats are utilized in the printed circuit board, they are either utilized as preset rheostats or trimmers. Trimmers are a small rheostat generally used in circuits for calibration. Though there is an option of 2 terminal trimmers, in most of the cases 3 terminal potentiometer trimmer is utilized as a 2 terminal rheostat.

 

Applications of a Rheostat

One of the most important applications of the rheostat as discussed above is to operate the flow of current. All of its other application is derived from this current controlling capability of the rheostat. For example, the rheostats are used to limit the flow of current such that high current faults could be prevented. It is important to choose the size of the rheostat according to the current requirement. For instance, if you have got a high current circuit then you need to have a rheostat of larger size. These kinds are used in dimmer circuits, in heaters, ovens as well as speed control circuits in motors.

 

This was all we have regarding Rheostat. Hope you liked the article. Brands that manufacture them are Ohmite, Vishay, and TE Connectivity. Make sure to check them out using the links as provided.  

View all our Rheostats


Copyright ©2024  X-ON Electronic Services. All rights reserved.